Improved Bounds on the Restricted Isometry Constant for Orthogonal Matching Pursuit

نویسندگان

  • Jinming Wen
  • Xiaomei Zhu
  • Dongfang Li
چکیده

In this letter, we first construct a counter example to show that for any given positive integer K ≥ 2 and for any 1 √ K+1 ≤ t < 1, there always exist a K−sparse x and a matrix A with the restricted isometry constant δK+1 = t such that the OMP algorithm fails in K iterations. Secondly, we show that even when δK+1 = 1 √ K+1 , the OMP algorithm can also perfectly recover every K−sparse vector x from y =Ax in K iteration. This improves the best existing results which were independently given by Mo et al. and Wang et al.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Sharp Restricted Isometry Constant Bound of Orthogonal Matching Pursuit

We shall show that if the restricted isometry constant (RIC) δs+1(A) of the measurement matrix A satisfies δs+1(A) < 1 √ s+ 1 , then the greedy algorithm Orthogonal Matching Pursuit(OMP) will succeed. That is, OMP can recover every s-sparse signal x in s iterations from b = Ax. Moreover, we shall show the upper bound of RIC is sharp in the following sense. For any given s ∈ N, we shall construc...

متن کامل

On the Theoretical Analysis of Orthogonal Matching Pursuit with Termination Based on the Residue

Orthogonal Matching Pursuit (OMP) is a simple, yet empirically competitive algorithm for sparse recovery. Recent developments have shown that OMP guarantees exact recovery of K-sparse signals in K iterations if the observation matrix Φ satisfies the Restricted Isometry Property (RIP) with Restricted Isometry Constant (RIC) δK+1 < 1

متن کامل

Improved Bounds on RIP for Generalized Orthogonal Matching Pursuit

Generalized Orthogonal Matching Pursuit (gOMP) is a natural extension of OMP algorithm where unlike OMP, it may select N(≥ 1) atoms in each iteration. In this paper, we demonstrate that gOMP can successfully reconstruct a K-sparse signal from a compressed measurement y = Φx by K iteration if the sensing matrix Φ satisfies restricted isometry property (RIP) of order NK where δNK < √ N √ K+2 √ N ...

متن کامل

Improved RIP Analysis of Orthogonal Matching Pursuit

Orthogonal Matching Pursuit (OMP) has long been considered a powerful heuristic for attacking compressive sensing problems; however, its theoretical development is, unfortunately, somewhat lacking. This paper presents an improved Restricted Isometry Property (RIP) based performance guarantee for -sparse signal reconstruction that asymptotically approaches the conjectured lower bound given in Da...

متن کامل

Orthogonal Matching Pursuit with random dictionaries

In this paper we investigatet the efficiency of the Orthogonal Matching Pursuit for random dictionaries. We concentrate on dictionaries satisfying Restricted Isometry Property. We introduce a stronger Homogenous Restricted Isometry Property which is satisfied with overwhelming probability for random dictionaries used in compressed sensing. We also present and discuss some open problems about OMP.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1406.4335  شماره 

صفحات  -

تاریخ انتشار 2014